What's new

Welcome to App4Day.com

Join us now to get access to all our features. Once registered and logged in, you will be able to create topics, post replies to existing threads, give reputation to your fellow members, get your own private messenger, and so, so much more. It's also quick and totally free, so what are you waiting for?

Asymptotic Statistics

F

Frankie

Moderator
Joined
Jul 7, 2023
Messages
101,954
Reaction score
0
Points
36
1c565a09032edfebc845d6167831a02a.jpeg

Free Download Asymptotic Statistics by Rabi Bhattacharya , Manfred Denker
English | PDF | 1990 | 121 Pages | ISBN : 3764322829 | 6.7 MB
These notes are based on lectures presented during the seminar on " Asymptotic Statistics" held at SchloB Reisensburg, Gunzburg, May 29-June 5, 1988. They consist of two parts, the theory of asymptotic expansions in statistics and probabilistic aspects of the asymptotic distribution theory in nonparametric statistics. Our intention is to provide a comprehensive presentation of these two subjects, leading from elementary facts to the advanced theory and recent results. Prospects for further research are also included. We would like to thank all participants for their stimulating discussions and their interest in the subjects, which made lecturing very pleasant. Special thanks are due H. Zimmer for her excellent typing. We would also like to take this opportunity to to express our thanks to the Gesellschaft fur mathematische Forschung and to the Deutsche Mathematiker Vereinigung, especially to Professor G. Fischer, for the opportunity to present these lectures and to the Birkhauser Verlag for the publication of these lecture notes. R. Bhattacharya, M. Denker Part I: Asymptotic Expansions in Statistics Rabi Bhattacharya 11 §1. CRAMER-EDGEWORTH EXPANSIONS Let Q be a probability measure on (IRk, B"), B" denoting the Borel sigmafield on IR". Assume that the s - th absolute moment of Q is finite, (1.1) P. := J II x lis Q(dx) < 00, for some integer s;::: 3, and that Q is normalized, (1.2) J x(i)Q(dx) = 0 (1 ~ i ~ k), J x(i)x(j)Q(dx) = Dij (1 ~ i,j ~ k).​




Recommend Download Link Hight Speed | Please Say Thanks Keep Topic Live
Links are Interchangeable - Single Extraction
 
Top Bottom