What's new

Welcome to App4Day.com

Join us now to get access to all our features. Once registered and logged in, you will be able to create topics, post replies to existing threads, give reputation to your fellow members, get your own private messenger, and so, so much more. It's also quick and totally free, so what are you waiting for?

Design of Low-Voltage CMOS Switched-Opamp Switched-Capacitor Systems

F

Frankie

Moderator
Joined
Jul 7, 2023
Messages
101,954
Reaction score
0
Points
36
53e2d0cc582b7aedac6b53652e27c9b0.jpeg

Free Download Design of Low-Voltage CMOS Switched-Opamp Switched-Capacitor Systems by Vincent S. L. Cheung , Howard C. Luong
English | PDF | 2003 | 207 Pages | ISBN : 1402074662 | 17.8 MB
In Design of Low-Voltage CMOS Switched-Opamp Switched-Capacitor Systems, the emphasis is put on the design and development of advanced switched-opamp architectures and techniques for low-voltage low-power switched-capacitor (SC) systems. Specifically, the book presents a novel multi-phase switched-opamp technique together with new system architectures that are critical in improving significantly the performance of switched-capacitor systems at low supply voltages:​

*A generic fast-settling double-sampling SC biquadratic filter architecture is proposed to achieve high-speed operation for SC circuits.
*A low-voltage double-sampling (DS) finite-gain-compensation (FGC) technique is employed to realize high-resolution SD modulator using only low-DC-gain opamps to maximize the speed and to reduce power dissipation.
*A family of novel power-efficient SC filters and SD modulators are built based on using only half-delay SC integrators.
*Single-opamp-based SC systems are designed for ultra-low-power applications.
In addition, on the circuit level, a fast-switching methodology is proposed for the design of the switchable opamps to achieve switching frequency up to 50 MHz at 1V, which is improved by about ten times compared to the prior arts.
Finally, detailed design considerations, architecture choices, and circuit implementation of five chip prototypes are presented to illustrate potential applications of the proposed multi-phase switched-opamp technique to tackle with and to achieve different stringent design corners such as high-speed, high-integration-level and ultra-low-power consumption at supply voltages of 1V or lower in standard CMOS processes.
[/b]

Recommend Download Link Hight Speed | Please Say Thanks Keep Topic Live
Links are Interchangeable - Single Extraction
 
Top Bottom