What's new

Welcome to App4Day.com

Join us now to get access to all our features. Once registered and logged in, you will be able to create topics, post replies to existing threads, give reputation to your fellow members, get your own private messenger, and so, so much more. It's also quick and totally free, so what are you waiting for?

Information Criteria and Statistical Modeling

F

Frankie

Moderator
Joined
Jul 7, 2023
Messages
101,954
Reaction score
0
Points
36
eed6fada6b82550a8344d3051fde215a.jpeg

Free Download Information Criteria and Statistical Modeling by Sadanori Konishi , Genshiro Kitagawa
English | PDF(True) | 2008 | 282 Pages | ISBN : 0387718869 | 5.4 MB
The Akaike information criterion (AIC) derived as an estimator of the Kullback-Leibler information discrepancy provides a useful tool for evaluating statistical models, and numerous successful applications of the AIC have been reported in various fields of natural sciences, social sciences and engineering.​

One of the main objectives of this book is to provide comprehensive explanations of the concepts and derivations of the AIC and related criteria, including Schwarz's Bayesian information criterion (BIC), together with a wide range of practical examples of model selection and evaluation criteria. A secondary objective is to provide a theoretical basis for the analysis and extension of information criteria via a statistical functional approach. A generalized information criterion (GIC) and a bootstrap information criterion are presented, which provide unified tools for modeling and model evaluation for a diverse range of models, including various types of nonlinear models and model estimation procedures such as robust estimation, the maximum penalized likelihood method and a Bayesian approach.
[/b]

Recommend Download Link Hight Speed | Please Say Thanks Keep Topic Live

FileFox
oqlgc.rar
Rapidgator
oqlgc.rar.html
Uploadgig
oqlgc.rar
Links are Interchangeable - Single Extraction
 
Top Bottom