What's new

Welcome to App4Day.com

Join us now to get access to all our features. Once registered and logged in, you will be able to create topics, post replies to existing threads, give reputation to your fellow members, get your own private messenger, and so, so much more. It's also quick and totally free, so what are you waiting for?

Practical Full Stack Machine Learning

F

Frankie

Moderator
Joined
Jul 7, 2023
Messages
101,954
Reaction score
0
Points
36
cd27d0bd79c97824bf1b68bf8d221374.jpeg

Free Download Practical Full Stack Machine Learning: A Guide to Build Reliable, Reusable, and Production-Ready Full Stack ML Solutions (English Edition) by Alok Kumar
English | November 26, 2021 | ISBN: 9391030424 | 422 pages | MOBI | 7.54 Mb
Master the ML process, from pipeline development to model deployment in production.​

Key Features
● Prime focus on feature-engineering, model-exploration & optimization, dataops, ML pipeline, and scaling ML API.
● A step-by-step approach to cover every data science task with utmost efficiency and highest performance.
● Access to advanced data engineering and ML tools like AirFlow, MLflow, and ensemble techniques.
Description
'Practical Full-Stack Machine Learning' introduces data professionals to a set of powerful, open-source tools and concepts required to build a complete data science project. This book is written in Python, and the ML solutions are language-neutral and can be applied to various software languages and concepts.
The book covers data pre-processing, feature management, selecting the best algorithm, model performance optimization, exposing ML models as API endpoints, and scaling ML API. It helps you learn how to use cookiecutter to create reusable project structures and templates. It explains DVC so that you can implement it and reap the same benefits in ML projects.It also covers DASK and how to use it to create scalable solutions for pre-processing data tasks. KerasTuner, an easy-to-use, scalable hyperparameter optimization framework that solves the pain points of hyperparameter search will be covered in this book. It explains ensemble techniques such as bagging, stacking, and boosting methods and the ML-ensemble framework to easily and effectively implement ensemble learning.
The book also covers how to use Airflow to automate your ETL tasks for data preparation. It explores MLflow, which allows you to train, reuse, and deploy models created with any library. It teaches how to use fastAPI to expose and scale ML models as API endpoints.
What you will learn
● Learn how to create reusable machine learning pipelines that are ready for production.
● Implement scalable solutions for pre-processing data tasks using DASK.
● Experiment with ensembling techniques like Bagging, Stacking, and Boosting methods.
● Learn how to use Airflow to automate your ETL tasks for data preparation.
● Learn MLflow for training, reprocessing, and deployment of models created with any library.
● Workaround cookiecutter, KerasTuner, DVC, fastAPI, and a lot more.
Who this book is for
This book is geared toward data scientists who want to become more proficient in the entire process of developing ML applications from start to finish. Knowing the fundamentals of machine learning and Keras programming would be an essential requirement.
Table of Contents
1. Organizing Your Data Science Project
2. Preparing Your Data Structure
3. Building Your ML Architecture
4. Bye-Bye Scheduler, Welcome Airflow
5. Organizing Your Data Science Project Structure
6. Feature Store for ML
7. Serving ML as API

Recommend Download Link Hight Speed | Please Say Thanks Keep Topic Live

Rapidgator
i6wqv.rar.html
NitroFlare
i6wqv.rar
Uploadgig
i6wqv.rar
NovaFile
i6wqv.rar
Fikper
i6wqv.rar.html
Links are Interchangeable - Single Extraction
 
Top Bottom