What's new

Welcome to App4Day.com

Join us now to get access to all our features. Once registered and logged in, you will be able to create topics, post replies to existing threads, give reputation to your fellow members, get your own private messenger, and so, so much more. It's also quick and totally free, so what are you waiting for?

Random sets and invariants for (type II) continuous tensor product systems of Hilbert spaces

F

Frankie

Moderator
Joined
Jul 7, 2023
Messages
101,954
Reaction score
0
Points
36
86b59e3793340c3ee9fa115b592be4af.jpeg

Free Download Random sets and invariants for (type II) continuous tensor product systems of Hilbert spaces By Volkmar Liebscher
2009 | 124 Pages | ISBN: 0821843184 | PDF | 1 MB
In a series of papers Tsirelson constructed from measure types of random sets or (generalised) random processes a new range of examples for continuous tensor product systems of Hilbert spaces introduced by Arveson for classifying E0-semigroups upto cocyle conjugacy. This paper starts from establishing the converse. So the author connects each continuous tensor product system of Hilbert spaces with measure types of distributions of random (closed) sets in 0 1 or R. These measure types are stationary and factorise over disjoint intervals. In a special case of this construction, the corresponding measure type is an invariant of the product system. This shows, completing in a more systematic way the Tsirelson examples, that the classification scheme for product systems into types In, IIn and III is not complete. Moreover, based on a detailed study of this kind of measure types, the author constructs for each stationary factorising measure type a continuous tensor product system of Hilbert spaces such that this measure type arises as the before mentioned invariant​


Recommend Download Link Hight Speed | Please Say Thanks Keep Topic Live

FileFox
o5hi7.rar
Rapidgator
o5hi7.rar.html
Uploadgig
o5hi7.rar
Links are Interchangeable - Single Extraction
 
Top Bottom