What's new

Welcome to App4Day.com

Join us now to get access to all our features. Once registered and logged in, you will be able to create topics, post replies to existing threads, give reputation to your fellow members, get your own private messenger, and so, so much more. It's also quick and totally free, so what are you waiting for?

Time Series Analysis with Python Cookbook [Repost]

F

Frankie

Moderator
Joined
Jul 7, 2023
Messages
102,490
Reaction score
0
Points
36
c974c043d0bf0a81dce5ca8401ffdf52.jpeg

Free Download Time Series Analysis with Python Cookbook: Practical recipes for exploratory data analysis, data preparation, forecasting, and model evaluation by Tarek A. Atwan
English | June 30, 2022 | ISBN: 1801075549 | True PDF | 630 pages | 38.7 MB
Perform time series analysis and forecasting confidently with this Python code bank and reference manual


Key Features

Explore forecasting and anomaly detection techniques using statistical, machine learning, and deep learning algorithmsLearn different techniques for evaluating, diagnosing, and optimizing your modelsWork with a variety of complex data with trends, multiple seasonal patterns, and irregularities
Book Description
Time series data is everywhere, available at a high frequency and volume. It is complex and can contain noise, irregularities, and multiple patterns, making it crucial to be well-versed with the techniques covered in this book for data preparation, analysis, and forecasting.
This book covers practical techniques for working with time series data, starting with ingesting time series data from various sources and formats, whether in private cloud storage, relational databases, non-relational databases, or specialized time series databases such as InfluxDB. Next, you'll learn strategies for handling missing data, dealing with time zones and custom business days, and detecting anomalies using intuitive statistical methods, followed by more advanced unsupervised ML models. The book will also explore forecasting using classical statistical models such as Holt-Winters, SARIMA, and VAR. The recipes will present practical techniques for handling non-stationary data, using power transforms, ACF and PACF Descriptions, and decomposing time series data with multiple seasonal patterns. Later, you'll work with ML and DL models using TensorFlow and PyTorch.
Finally, you'll learn how to evaluate, compare, optimize models, and more using the recipes covered in the book.
What you will learn
Understand what makes time series data different from other dataApply various imputation and interpolation strategies for missing dataImplement different models for univariate and multivariate time seriesUse different deep learning libraries such as TensorFlow, Keras, and PyTorchDescription interactive time series visualizations using hvDescriptionExplore state-space models and the unobserved components model (UCM)Detect anomalies using statistical and machine learning methodsForecast complex time series with multiple seasonal patterns
Who this book is for
This book is for data analysts, business analysts, data scientists, data engineers, or Python developers who want practical Python recipes for time series analysis and forecasting techniques. Fundamental knowledge of Python programming is required. Although having a basic math and statistics background will be beneficial, it is not necessary. Prior experience working with time series data to solve business problems will also help you to better utilize and apply the different recipes in this book.

Recommend Download Link Hight Speed | Please Say Thanks Keep Topic Live

NovaFile
7jdsz.rar.rar
Rapidgator
7jdsz.rar.rar.html
NitroFlare
7jdsz.rar.rar
Uploadgig
7jdsz.rar.rar
Links are Interchangeable - Single Extraction
 
Top Bottom